

Team NoName Final Report

Firefighting Drone Challenge

William Simon

Scott Schachner

Jeremy Pattishal

Jesse Dannenberg

Date Submitted: 5/8/2015

Firefighting Drone Challenge North Carolina State University

Page 2 of 19

Introduction
The goal of this challenge is to develop the technologies required for drones to assist in firefighting

operations. In the considered scenario there is a building on fire and many rooms are quickly filling up

with smoke. Traditionally firefighters have to scan the building for victims, room by room, by crawling

under the smoke while looking for potential hazards. With a drone capable of entering each room and

able to scan a room accurately for a human body, the drone can remove the firefighter from a

potentially dangerous situation.

Image 1: The Final Drone

Firefighting Drone Challenge North Carolina State University

Page 3 of 19

Hardware

Airframe
Turnigy Talon Quadcopter frame

 This is a carbon quadcopter frame that provided the foundation of what would become the

firefighting drone. This simple kit is equipped with four 10 inch hollow carbon rods, and two

small carbon plates to act as the core structural components of the drone.

 The quadcopter kit also has a motor mount for each of the four carbon arms, and connection

brackets for the center plates and carbon arms.

Additional Carbon Rods

 Additional 1 cm thick carbon rods were implemented as a means of adding rigidity to the

airframe as well as providing mounting space for the 10 ultrasonic sensors.

 These carbon rods connect each of the four drone arms to one another meeting each at a 45

degree angle.

Aluminum Corner Brackets

 Four aluminum corner bracket were milled from solid pieces of metal. The holes were then

drilled through each bracket; one hole large enough to fit the main arms of the drone and two

smaller holes drilled at 45 degree angles until they intersect the larger hole in order to place the

additional smaller carbon rods from one corner to another.

Additional Carbon Fiber Plates

 Additional 2 mm thick carbon fiber plates were used to make longer legs for the drone when the

middle section is extended for fitting of all the extra components.

 The new legs were simply cut in a triangular shape for simplicity then attached in the same

fashion as the original legs.

Brass Connection Rods

 Various length brass rods each with a female threaded end and a male threaded end were used

extensively in the construction of the center column. The rods connect carbon plates and attach

various electrical components to the main body of the airframe.

Electronic Components
**Component specs and manuals are included under the Downloads section of the website.

BeagleBone Black Microcontroller (BBBK)

 The BBBK was chosen for its versatility in embedded Linux applications. It was used for the

purposes of having efficient execution and control with software for near real-time

performance.

Firefighting Drone Challenge North Carolina State University

Page 4 of 19

KK2 Flight Controller and KK2 Programming Board

 The KK2 is the chosen flight controller for the copter due to its versatility, ease of use, and

general familiarity. The programming board was used to change the flying mode of the KK2

board, as it has multicopter support options.

Turnigy 9X 9Ch Transmitter (Receiver included)

 This is the interface between pilot and drone. The receiver can receive up to 9 channels,

however our drone only uses 5.

Ultrasonic Sensors

 The chosen sensors for obstacle avoidance and collision detection implementation for safe and

easy flight mechanics. HC-SR04 was the model.

IMU - Razor 9DOF

 The IMU provides an accelerometer, gyroscope, and magnetometer for precise orientation

measurements. This is useful for smoother control.

Logic Level Converter

 This is required to shift 5V signals to 3.3V signals and vice-versa, as the BBBK is only 3.3V

tolerant.

Cameras

 A Logitech C920 webcam was used for high fidelity streaming purposes for FPV (first person

view) remote piloting.

 A Seek Thermal camera was used for a video feed that would be unperturbed by smoke and

locate victims and potential danger spots before firefighters enter the building.

Wifi Adapter

 Using an AP (access point) configurable Wi-Fi card, a connection was established between a

client (most often a laptop) and the drone for display of video feeds.

 The AP was also used for programming the BBBK.

Motors and ESCs

 Brushless motors are used to drive the propellers. ESCs (electronic speed controllers) are fed

PWM (pulse-width modulation) signals, which are translated into a DC source for the motors.

Longer pulse within period = higher voltage = higher rpm.

Custom PCB

 Designed to simplify wiring to/from the BBBK. This is not a necessary component, it just made

many lives easier.

Firefighting Drone Challenge North Carolina State University

Page 5 of 19

Power Setup / Batteries

 One 4000mAh 4S LiPo battery became the final power source. The distribution method is

described below in the electrical wiring section.

 We used a Turnigy HV SBEC 5A Switch Regulator to drop the voltage coming off the battery to 5

volts, which can be used to power the BBBK, ultrasonics, KK2 and receiver.

Initial Design Plan
Initially, we planned on building a pentacopter as seen in

Image 2. We progressed all the way to flight testing phase

when we realized that the wasted thrust from the center

prop overlapping with the smaller props as well as the

central tower was so much that we were unable to achieve

anymore flight than ground effect. We were forced to

switch to the final version of the copter as seen above.

Final Airframe Design

The airframe is very simple. From the base of the Turnigy

quadcopter, the landing gear legs are extended to 6 inches

in order to compensate for the addition of parts in the

center tower. The final design does not add any more

plates for mounting any components in the tower, instead

the use of brass connection rods to extend the bottom

plate was employed. This gives ample space for wiring and

a lightweight design. The hollow carbon fiber arms were

also cut in half in order to fit through a doorway. Without

cutting the arms, the craft would have never been able to fit through a typical door. The addition of

carbon fiber rods for the mounting of ultrasonic sensors were also used. Aluminum holders were used to

hold the rods in place; this also served to stiffen the airframe from twisting under full payload.

Lessons Learned

After constructing the pentacopter we found that the current configuration created way too much drag

for the craft to lift off the ground more than an inch or two. The center column of electronics and wires

essentially blocked all of the thrust provided by the main lifting center propeller. In an effort to actually

get the drone airborne the decision was made to convert it into a quadcopter configuration. Without

extending the arms the four outer motors were replaced with larger (type of motor) motors with 12 inch

propellers. Since the drone arms were too small for the larger propellers; we had to stagger the height

of the motors by an inch which made it particularly hard to calibrate the drone for flight. In the future it

would be best to set up the firefighting drone in a quadcopter configuration with every motor level with

one another and without any propeller overlap. This could be achieved with higher power motors,

notably the same ones used by Team Hindenburg. The motors and propeller setup would be able to fit

in the same footprint as our modified drone without propeller overlap. The need for the shorter main

arms is to fit within a door-frame.

Image 2: Initial Pentacopter Design

Firefighting Drone Challenge North Carolina State University

Page 6 of 19

Electrical Wiring

Introduction
Wiring was one of the biggest headaches of this project, and a part that underwent a number of

adjustments. Wiring for ultrasonic sensors, a Razor IMU, and a Turnigy receiver will be covered below.

Note that the specifics for the physical wiring

are left somewhat up to the builder, as each

group used a different method for attaching

everything to the BBBK. Our group went

through several failing methods before falling

back on Team Hindenburg’s PCB, which we

modified for our purposes. If the reader

decides to go with this method, note that we

used the 1st version of the PCB, which had

soldering points for logic level converters on

the board. We did not use these converters,

but the open wires allowed us to modify the

board by jumping the sensor inputs to the

pins we needed them on as opposed to Team

Hindenburg’s pins. This PCB may or may not be

included in their report.

Sensor Wiring

Introduction
Sensors integration was the most complicated part of the project, taking up the first half of the semester

and going through several iterations as will be detailed below. The sensors included on the drone are 10

HC-SR04 ultrasonic sensors and 1 9DOF Razor IMU.

HC-SR04 Sensor
The HC-SR04 is an ultrasonic sensor. It fires a burst

of ultrasonic sound, which bounces off of objects

and returns to the sensor. The delay from firing to

return is measured to calculate the distance from

the object. The sensor requires very specific timing

to measure accurately, and it is difficult for a

non-preemptive OS such as Arch Linux to measure

accurately. Therefore, our team utilized one of the

BBBK’s Programmable Realtime Unit (PRU) CPUs to

trigger and measure the sensors. The PRUs use

ARM assembly code to operate, with only five

nanoseconds per line of code, allowing very

accurate measurements. The timing diagram for

the HC-SR04 can be seen in Figure 1. One very important note about the HC-SR04 is that it is designed to

Image 4: HC-SR04 Ultrasonic Sensor

Image 3: Hindenburg's PCB with Our Modifications

Firefighting Drone Challenge North Carolina State University

Page 7 of 19

be used with 5V tolerant systems, which the BBBK is not. Therefore, special care must be taken when

wiring the sensors to the board, which will be discussed in further detail later in this report.

Figure 1: HC-SR04 Timing Diagram

Initial Wiring Plan

Before testing began, we laid out where we thought we would like to wire our sensors to the BBBK, as in

Figure 2.

Figure 2: Initial Wiring

Firefighting Drone Challenge North Carolina State University

Page 8 of 19

We initially planned to multiplex our echoes so as to reuse PRU pins, as a large portion of the pins were

in use by the BBBK HDMI port. However, we quickly realized that this layout would cause unnecessary

delays in measurement, since not all ultrasonics could be measured at once. This, coupled our learning

how to disable the HDMI, led to a change in our wiring layout before we reached the testing phase.

Special Note on Triggering
Each team struggled with the proper way to trigger the ultrasonic sensors. Multiple methods were tried,

with different levels of success. Methods that were NOT successful are as follows. DO NOT try to trigger

all sensors from one pin. Triggering the sensor draws approximately 2mA from the BBBK, and the BBBK

pins are rated for 4mA or 6mA, depending on the pin. Firing all sensors from one pin will destroy the pin.

DO NOT try to trigger the sensors too fast without a current limiting resistor. Another team had trouble

with this, so I do not have the exact numbers or rate of fire, however our theory is that since the HC-

SR04 is technically rated for a 5V trigger, and we are only providing 3.3V, the current draw is too high to

sustain a fast fire rate. Our method of triggering, which works, is detailed later in this section.

Final Wiring Layout

Figure 3: Final BBBK Wiring

Firefighting Drone Challenge North Carolina State University

Page 9 of 19

Figure 3 is our final wiring layout. As can be seen, each sensor has a dedicated echo pin on the PRU. We

have 4 Trigger pins, wired to standard GPIOs, which can also be controlled via PRU, albeit at a much

slower rate. However, trigger signals are not required to be accurate, only greater than 10

microseconds, so there is no problem using GPIOs. Triggers 1 and 2 each trigger 3 sensors, while Triggers

3 and 4 trigger 2 each. This is to avoid the triggering problems described above. The pins used have been

checked to verify that they can supply the 6mA needed to trigger the sensors. Note that while it does

not matter which sensors are wired where for the echo pins, we

used the wiring layout in Table 1 for the triggers. We chose this

layout so that in the event that we had sensor interference from

firing all sensors at once, we could fire one trigger at a time and

have sensors facing different directions so as to have the least

amount of interference as possible. For example, if Trigger 1 were

fired, the north, southwest and southeast triggers are facing away

from each other, and as such will not interfere.

Wiring the Echoes
Wiring the echo pins properly is very important for not damaging the BBBK. The HC-SR04 is designed to

be used with 5V tolerant boards. Since the BBBK pins are 3.3V tolerant, wiring a sensor directly to the

board is a great way to fry it. Several methods were tested by different teams when wiring the sensors.

Logic level converters were tested by a different team and ultimately thrown out, as the delay made the

measurement very inaccurate. They switched to voltage dividers, but did not have time to test them

extensively, so we cannot endorse that method either. Our team’s initial solution that we carried

through to the final design was using a simple 1kOhm current limiting resistor in series with the pin, as

seen in Figure 4. We never had any problems with this layout as long as the system is powered up

correctly. System powering will be discussed

later in this report.

Trigger Pin Sensor Orientation

1 North, SW, SE

2 South, NW, NE

3 East, West

4 Top, Bottom
Table 1: Triggering Layout

Figure 4: HC-SR04 Echo Wiring

Firefighting Drone Challenge North Carolina State University

Page 10 of 19

Transmitter/Receiver Wiring

Introduction
While sensors integration is necessary to get distance and movement data to the BBBK, setting up the

transmitter and receiver is equally important to allow the BBBK to read the user’s inputs and modify

them as necessary with the sensor data. On a standard drone, the user wires the receiver directly to the

KK2 flight board. For our project however, we wired the receiver to the BBBK, which reads in the users

inputs, modifies them as necessary given the sensor data, and outputs the modified signals to the KK2.

Turnigy 9X
For this project, we used the Turnigy

9X 9 Channel transmitter/receiver

combo. The receiver receives PPM

signals from the transmitter, which it

converts to PWM signals similar to

what is seen in Figure 5. These signals

are typically interpreted by the KK2,

but we set up the BBBK’s PRU 0 to

measure the length of time each signal

is high and output this number to

shared ram, which can then be read

and modified by the main program.

The wiring layout can be seen in image

3 above.

Receiver Input Wiring
Unlike the ultrasonic sensors, the transmitter is 3.3V tolerant and can be attached directly to the BBBK.

It must be powered by a 5V line, as well as grounded. System powering is covered later in this report.

BBBK Output Wiring
PWM output pins are then wired to the KK2 Flight Board.

Initially, we wired out KK2 directly to the BBBK. This may

have been a fatal mistake however, as the KK2 is expecting

a 5V input. Ultimately, we added a logic level converter in

between the BBBK and the KK2 as seen in Figure 6. This

worked out well in limiting the current draw on the BBBK.

Control Coding

Introduction
Control coding utilizes the ultrasonic sensors, the IMU and the receiver inputs to modify user input and

send updated signals from the output pins to the KK2 control board. The objective of control coding is to

use the IMU to prevent drift in from drafts, and use the ultrasonic sensors to prevent crashes. Our team

only completed part of this goal, implementing control coding for 4 sensors, north, south, east and west.

We are currently also reading data from the IMU, but not using it to modify the outputs. The code also

uses the channel 8 input signal to switch between modified and unmodified signals. All program files can

Figure 6: Logic Level Converter Wiring

Figure 5: PPM to PWM Reciever

Firefighting Drone Challenge North Carolina State University

Page 11 of 19

be found in the Github linked in the Downloads section of our website. This Github also has a readme

specifying the proper methods for getting the code up in running

on the BBBK. Note that code has only been tested for Arch Linux

ARM.

PWM I/O Programming
The receiver inputs and BBBK outputs to the KK2 are both PWM

signals as discussed in the previous section. These signals are

nearly identical to the echo inputs from the ultrasonic sensors, and

therefore are decoded and encoded on PRU 0. The PRU code is

PWMInOut.p. The program uses a timer to measure how long each

signal is high and saves this data into a shared memory that can be

accessed by both PRUs and the primary CPU and main control

program. The memory layout can be seen in Table 2. The modified

memory locations contain the PWM signals that have been

modified by control code. The software mux is also located in this

program. When the program reads the value of channel 8, it checks

to see if it is above or below the median time. If the signal is high

for over the median time, the switch is high, assist is on, and the

program will generate PWM output signals from the modified

memory locations. Otherwise, the output signals are generated

from the same memory locations that the input signals were saved

to, essentially just passing them through without modifying them.

If the main program crashes for any reason, the user can flip the

assist switch to take direct control of the drone. This solution does

not solve complete BBBK failure however, and should therefore be

replaced with a hardware solution. More details on code

functionality can be found in the annotations in the files

themselves.

Ultrasonic Sensor Coding
Ultrasonic sensor triggering and measuring is controlled entirely by
PRU 1 on the BBBK. The PRU code is loaded via PruInit.py and
sensor measurements taken by the PRU are read from memory in
US.py. The PRU code itself is in Ultrasonic.p. There is a delay of .03
seconds before each trigger to allow the sensors to reset and the
previous sound bursts to die away, resulting in a frame rate of
approximately 33 measurements a second per sensor. This frame
rate can be easily increased by decreasing the delay before the
trigger, however we felt that this frame rate was more than
enough for our goals while limiting the amount of sound
interference and avoiding the triggering problem discussed above.
The PRU stores the values of the ultrasonic measurements to a
shared memory that can be accessed by both PRUs and the
primary CPU and code. The memory layout can be seen Table 2.

Signal Offset from Shared

Ram Start (0x10000)

Ch. 1 In 0x10200

Ch. 2 In 0x10210

Ch. 3 In 0x10220

Ch. 4 In 0x10230

Ch. 5 In 0x10240

Ch. 6 In 0x10250

Modified

Ch 1. Out

0x10200

Modified

Ch 2. Out

0x10200

Modified

Ch 3. Out

0x10200

Modified

Ch 4. Out

0x10200

Modified

Ch 5. Out

0x10200

Echo 1 0x10000

Echo 2 0x10010

Echo 3 0x10020

Echo 4 0x10030

Echo 5 0x10040

Echo 6 0x10050

Echo 7 0x10060

Echo 8 0x10070

Echo 9 0x10080

Echo 10 0x10090

Table 2: Shared Memory Mapping

Firefighting Drone Challenge North Carolina State University

Page 12 of 19

More details on code functionality can be found in the annotations in the files themselves.

Modifying the Output Signals
Control coding can be found in the PWM.py file. Our control coding is relatively simple, since we did not
have a lot of time to work on it. We are currently only using the North, South, East and West ultrasonic
sensors and a simple proportional algorithm to modify code. PWM.py contains annotations on the
specifics of the control code.

System Powering and Boot Up

Practical Problems
Powering the BBBK and sensors systems can be tricky for a few reasons. Pins 27-46 are SYSBOOT pins,

which means they are integral during the board boot process. If there is any signal over these pins, the

BBBK will probably not boot properly. Also, supplying current to a pin before the BBBK is booted will

most likely result in damage and destruction of the board. These problems make powering order very

important on the drone. No team found one foolproof solution, however, we found a fairly reliable

system.

Switches
Our team used 3 switches to ensure proper

boot order. Note in the figure below that

switch 3 disconnects the sensors and receiver

entirely from the system. This is because even

a ground connection can mess with the

SYSBOOT pins. Although the KK2 is not

connected to SYSBOOT pins, it too requires a

switch. If the KK2 does not receive a PWM

signal at its inputs upon power up, it will enter

a failed state and must be turned off and on

again. Integrating a switch is much easier than manually disconnecting the power wire each time this

must be done. Given more time, we would like to replace the switches with MOSFETS so they can be

controlled from software.

Booting from MicroSD
An important aspect of the boot up sequence is boot order. Normally, the system first attempts to boot

from eMMC, then from microSD card. However, if there is an error with the SYSBOOT pins, this boot

order can be corrupted and the BBBK may hang. We therefore found it useful to boot only from

microSD. This is accomplished by installing Arch Linux onto a microSD card and wiping the eMMC

memory via the line

sudo dd if=/dev/zero of=/dev/mmcblk1 bs=1024 count=1024

This way, no matter what the boot sequence is, the BBBK will always fall back to the microSD. We found

that this combined with the switch system provided reliable booting. Team Hindenburg claims to have

found a more reliable method, so it may be useful to read their report on the subject.

Figure 7: Switch Wiring

Firefighting Drone Challenge North Carolina State University

Page 13 of 19

IMU Integration

Introduction
During the planning phase of the project, we wanted a method of detecting and resisting drafts that

could be caused by a fire inside a building. To do this, we would need a way to measure drift. The class

settled on the 9DOF Razor IMU from Sparkfun for its ease of use.

IMU Wiring
The IMU is one of the easiest components to wire to the

BBBK. It is already 3.3V tolerant, so no special wiring is

needed to integrate it. Simply power the board from the

3.3V rail, ground it, and attach the Tx and Rx pins as

specified in Figure 3 above.

IMU Control Coding
Unfortunately, the IMU was never actually used for controls, as we had planned. Time was very limited

and this was a low priority on our list. In terms of base functionality, it is unnecessary; however, it could

add some very interesting capabilities to the drone with the included gyroscope, magnetometer, and

accelerometer.

Although it wasn’t used, if wired IMU readings will be outputted to the GUI when the Main.py program

in the Github is run. These signals are read in the imu.py file.

Image 5: 9DOF Razor IMU

Firefighting Drone Challenge North Carolina State University

Page 14 of 19

Video Integration

Introduction
This section will walk through the necessary steps to acquire a video stream from the Logitech C920

webcam and the Seek Thermal Camera over the Wi-Fi connection.

*In order for these to work, the devices must be plugged into the Beaglebone via USB and properly

recognized. This can be verified by checking the output of the command: # lsusb

Logitech Stream Setup

Image 6: Logitech C920

For the implementation of a video stream, we will be using a service known as MJPG-Streamer. This

service will allow us to send the feed of the camera’s frames to an IP address for anyone with access to

the Wi-Fi network to see.

First, you’ll need to download the MJPG-Streamer package along with its dependencies:

pacman –S mjpg-streamer libjpeg imagemagick gcc libv4l-dev

To get all the necessary mjpg-streamer files, download the folder “mjpg-streamer-code-182.zip” from

our <Downloads> page.

Using WinSCP, move the zip file you just downloaded into a folder of your creation that you will navigate

to whenever you wish to start the streaming service. Next, using 7zip, extract the contents of the folder

with the following commands:

pacman –S p7zip

7za x mjpg-streamer-code-182.zip

If the file “videodev2.h” is not under /usr/include/linux/, run the following command:

sudo ln –s /usr/include/linux/videodev2.h /usr/include/linux/videodev.h

Now that everything is installed, you can start the service simply by executing a command. The following

command is what our team used for a 60fps 640x280 resolution stream over the IP of alarm. This

command (as is) must be executed inside the directory named “mjpg-streamer” from the .zip file

contents:

./mjpg_streamer –i “./input_uvc.so –r 640x280 –f 60” –o “./output_http.so –w ./www” &

Firefighting Drone Challenge North Carolina State University

Page 15 of 19

The ampersand (&) tacked onto the end simply lets the process run unmonitored in the background. To

be able to type commands after this one, hit ctrl+C. The stream is available in several different browser

modes/windows for you to choose from at http://alarm:8080 when mjpg-streamer is running.

To stop the stream, the system must be powered off if the ampersand was used.

Other helpful documentation for mjpg-streamer: http://skillfulness.blogspot.com/2010/03/mjpg-

streamer-documentation.html

Seek Thermal Stream Setup

Image 7: Seek Thermal Camera

Get required packages:

pacman –S python2 python2-pillow opencv python2-numpy python2-pyusb

Download the python file “processVideo.py” from our <Downloads> page and place into the directory of

your choice.

Running this program from here will NOT work correctly because there is no configured display port for

the program to show frames. Running the program using:

python2 processVideo.py

Should return something like “Gtk Warning: cannot open display”. To fix this, the program needs to have

a remote display to project the frames to, i.e. a server. If this is not the error you receive, it is most likely

unable to compile due to a missing package. Make sure they line up with all the imported modules at

the top of the python program.

In our setup, we use X11 forwarding to send the compressed frames over to the server for

decompression, processing, and display to the user. This is completed by using an XWin Server as part of

Cygwin/X.

To get XWin Server on your computer, follow the instructions at this link:

http://x.cygwin.com/docs/ug/setup.html#setup-cygwin-x-installing

To open XWin Server, navigate to the root directory (folder = cygwin). Under this folder, go into “bin”

and look for “run.exe”. If this doesn’t work, try typing “xwin” into your start menu search bar and see if

it comes up there. Just a search for “xwin” on the correct drive should return the correct result.

Once you open up XWin Server, ssh into the Beaglebone:

$ ssh –XY root@alarm

http://alarm:8080/
http://skillfulness.blogspot.com/2010/03/mjpg-streamer-documentation.html
http://skillfulness.blogspot.com/2010/03/mjpg-streamer-documentation.html
http://x.cygwin.com/docs/ug/setup.html#setup-cygwin-x-installing

Firefighting Drone Challenge North Carolina State University

Page 16 of 19

The –X enables X11 forwarding on the server’s side. The –Y forces authentication credentials. On the

Beaglebone, X11 forwarding must be enabled in a different way, although the change will last until you

change it back. To do this, using WinSCP, navigate to /etc/ssh and open the “sshd_config” file in

a text editor (Notepad++ is highly recommended). Once opened, scroll down until you see the lines

below (line 102):

#X11Forwarding no

#X11DisplayOffset 10

#X11UseLocalhost no

Change these lines to:

X11Forwarding yes

#X11DisplayOffset 10

X11UseLocalhost no

Additional packages are required for X11 forwarding:

pacman –S xorg xauth

The “xauth” package is absolutely necessary for this method of streaming, otherwise the server you’re

using will see the client (Beaglebone) as restricted and will be unable to capture frames from the

camera.

Now you finally have everything you need to correctly run the program. This will open up a display on

the server’s machine (your laptop, in this case) showing a video feed from the thermal camera. To run

the program, as before, navigate to the directory where processVideo.py is stored and type:

python2 processVideo.py

Typing ctrl+C will close the program.

From boot, once in the correct directory, the sequence for viewing the stream will be:

1) Start XWin Server

2) $ ssh –XY root@alarm

3) # python2 processVideo.py

Image 8: Seek Thermal Visual Output with Bounding

Firefighting Drone Challenge North Carolina State University

Page 17 of 19

Wi-Fi Configuration
NOTICE: This guide assumes the use of a TP-LINK Wifi Adapter, model no. TL-WN7200ND. If you do not

have the exact model, this exact same process outlined below should work as long as your adapter has a

Ralink chipset (prefix = RT) and has access point capability. It also assumes Arch Linux ARM is the distro

of Linux in use. These instructions, and indeed all of the instructions on the Github are only tested for

Arch.

Before Wireless Capability
To connect your Beaglebone to the internet (so that you can download packages), follow the steps

below:

1) Plug the Beaglebone into an internet capable router via Ethernet cable

2) Plug the 5V power adapter into the Beaglebone

3) Check the list of devices connected to your network. If you’re using a NETGEAR router, this can

be done by visiting routerlogin.net. On this list, you’ll see a device labeled as “ALARM.” This is

the Beaglebone! It should have an IP address next to it that will be something like 198.162...

4) In putty (or something like it) use the IP address (or “alarm” should work to, in the same field) to

establish a connection.

5) login as: root

6) password for root: root

7) Good to go!

User Guide by TP-Link:

http://www.tp-link.com/resources/document/TL-WN7200ND_V1_User_Guide_1910010859.pdf

Driver Details
When you first connect the wifi adapter via

the micro-USB cable, the LED will most likely

begin to blink slowly. If this occurs, it means

that the driver has been installed correctly and

the device is recognized. If this happens,

you’re good to go! The driver required for this

adapter is native to the Arch distribution

(distro) our team is using, so this should be

plug and play. If you’re using our setup, it will

be.

To check driver status, typing

dmesg | grep usbcore

Should return something like “usbcore: registered new interface driver rtl8187” if

it worked correctly.

OPTIONAL: Using the Adapter as a Router for an Internet Connection when in SSH

This mode may be helpful at first when you don’t have to worry about portability. If you don’t like

working while being connected to a router, skip this section. The usefulness of this method as opposed

Image 9: TP-Link Wi-Fi Adapter

http://www.tp-link.com/resources/document/TL-WN7200ND_V1_User_Guide_1910010859.pdf

Firefighting Drone Challenge North Carolina State University

Page 18 of 19

to just using the AP (Access Point) comes from the fact that you don’t have to enable internet sharing

amongst your ports.

With this setup, you plug the Beaglebone’s Ethernet port into a router, and the adapter into the USB

port of the Beaglebone. This will enable you to connect to your Beaglebone wirelessly through the

preexisting wifi network you have setup for that router (using the same SSID and password).

This configuration was set up using steps entirely from the ArchWiki at this link:

https://wiki.archlinux.org/index.php/Wireless_network_configuration#Manual_setup

Get required packages:

pacman –S iw wireless_tools wpa_supplicant

Before continuing to the next step, check the name of the wifi interface. By default, it will most likely be

wlan0, which is used in the commands below. To check this interface, type the command below and

read the output. Interface names usually start with a ‘w’.

ip link

Set the adapter to ad-hoc mode so the adapter can share a peer-to-peer connection with your router.

Then, type the following commands to set the interface up and match it to your personal network:

**Notice the subtle difference between the ‘1(one)’ and the ‘l(L)’, the top portion of the one is

bent downward.

iw dev wlan0 set type ibss

ip link set wlan0 up

wpa_supplicant –D nl80211,wext –I wlan0 –c <(wpa_passphrase

“Your_SSID” “Your_key”) –B

“–B” allows the process to run in the background so you can do other things while connected to the

internet.

dhcpcd wlan0

The LED on the adapter should now be blinking quickly to indicate data transmission/reception.

iw dev wlan0 link

The output of this will show you whether the link is actually up or not.

How to Setup a Customizable Access Point
Get required packages:

pacman –S hostapd dnsmasq iptables brctl dhclient

A detailed guide for setup and configuration, as well as customization options, from installation, can all

be found here:

https://github.com/oblique/create_ap

Our method utilized the WPA + WPA2 passphrase:

create_ap wlan0 eth0 MyAccessPoint MyPassPhrase

https://wiki.archlinux.org/index.php/Wireless_network_configuration#Manual_setup
https://github.com/oblique/create_ap

Firefighting Drone Challenge North Carolina State University

Page 19 of 19

“eth0” is there to set where the wlan0 interface will get internet connectivity, if one is available.

Typing the line above will run the script. The script will not run again when you restart unless you type

that line again. In order to set it to start at boot, type the following:

systemctl enable create_ap

To configure what AP is being created by the script running on boot, using a program such as WinSCP,

edit the file “create_ap.service” found in the bin under ~/root and change the “ExecStart” line. The

command already there should look similar to the examples on the github page.

Your AP will only allow you to connect to the Beaglebone wirelessly and independent of any internet

connection or router. To connect your AP to the internet, the Beaglebone will need to be connected via

the Ethernet port to an internet-connected device with internet sharing enabled (laptop). You do not

need an internet connection to SSH to the Beaglebone.

To enable Ethernet port internet sharing on a Windows computer, simply right-click the wifi icon in the

bottom right corner and open the “Network and Sharing Center.” On the left side of that window, select

to “Change adapter settings.” You should be in the Network Connections window now, under Control

Panel\Network and Internet\Network Connections. Next, right-click on the adapter built into your

laptop with the wifi connection on it and open “Properties.” Navigate to the “Sharing” tab and check the

box next to enable Ethernet connection sharing. Your AP should now have internet access while your

Ethernet cable is connected and you will be free to download packages.

Conclusions

Strong Points of this Design
 Our drone had functional control coding running through the PRUs. 4 sensors were

implemented, with the modular nature of the code making it very easy to add more. All 10

sensors were at least tested to insure that they were firing and reading correctly and

simultaneously. Only one other team had control coding in a somewhat usable state by the end

of the semester, and ours was the only drone that had control coding solely through the BBBK.

 Our drone had excellent Wi-Fi enabled video with a range of over 100 feet and through multiple

stone walls at 60 frames a second with almost no latency. Ultimately we were not able to test

the functionality to its limits because we implemented the code so late in the semester;

however, no other team came close to touching our capabilities via Wi-Fi (we are ignoring the

illegal analog radio system used.)

 Our drone had usable infrared, capable of detecting and bounding heat sources such as humans

and bowls of hot water. No other team as far as I know of had infrared to a usable state.

Points of Improvement
 Easily our biggest problem while working on this drone was our team’s lack of experience in

drone design. We simply did not know how to design an effective and sturdy drone, as well as

tune it properly. In the future we would like to be able to consult or work directly with someone

knowledgeable in the field.

